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Topologically Massive Gravity [1, 2] (TMG) has recently received a great deal of attention

since the conjecture by Li, Song and Strominger [3] that the theory is chiral at a particular

point in parameter space. Although counter-arguments to the original proposal appeared

(regarding chirality and unitarity) [4–7], a refined version of the conjecture remained intact

upon truncating the non-chiral degree of freedom, which in turn could lead to a consistent

quantum theory [8]. It has also been known since the work of [1, 2] that AdS3 space is an

unstable background solution of TMG with Lagrangian

ITMG =
1

16πG

[
∫

M

d3x
√−g

(

R +
2

l2

)

+
1

µ
ICS

]

(0.1)

away from the chiral point µl = 1. The gravitational Chern-Simons term ICS in (0.1) is

given by

ICS =
1

2

∫

M

d3x
√−gελµνΓα

λσ

(

∂µΓσ
αν +

2

3
Γσ

µτΓ
τ
να

)

. (0.2)

We choose µ > 0 without loss of generality and we will set G = 1. The equations of motion

of TMG are given by

Eµν ≡ Gµν − 1

l2
gµν +

1

µ
Cµν = 0 (0.3)

where Cµν is the Cotton tensor.

It has been proposed in [9] that another background, the so-called spacelike warped

AdS3 space (WAdS3) could actually constitute a stable vacuum of the theory (this question

has been investigated in the recent paper [10]). Although less symmetric than its unwarped

cousin, it shares many of its features. In particular, for

ν ≡ µl

3
> 1, (0.4)

there exist regular black hole solutions [11] that can be obtained by performing discrete

identifications in WAdS3, much like BTZ black holes are obtained from AdS3.

One interest of these warped geometries is that TMG with “warped boundary condi-

tions” has been conjectured to be dual to a two-dimensional CFT with two unequal central

charges [9]

c =
(5ν2 + 3)l

ν(ν2 + 3)
, c̄ =

4νl

ν2 + 3
. (0.5)
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Let us note that such a CFT should display particular properties under parity transforma-

tions. In AdS3 space, the two asymptotic Virasoro algebras get mapped into each other

under a parity transformation. Indeed, the left and right movers are switched, which im-

plies in particular that the two Virasoro central charges 3l
2G

(1± 1
µl

) get switched. The two

conjectured Virasoro algebras appearing in warped geometries do not transform similarly

under parity. Under ν → −ν, the central charges c and c̄ just change sign, which can be

reabsorbed into a redefinition of the Virasoro generators Ln → −L−n and L̄n → −L̄−n.

Therefore, contrary to the AdS3 case, the two sectors of the conjectured CFT should

transform separately under parity.

The first central charge c has been recovered from a classical asymptotic symmetry

analysis, based on a very restricted phase space consisting of warped black holes and their

descendants [12]. Boundary conditions including warped black holes were written down

in [13] but the analysis was done in a different theory, namely Einstein-Maxwell-Chern-

Simons theory, and only in the regime of parameters with closed timelike curves. Since

the definition of charges and the content of the phase space are determined by the theory

considered, it is not obvious that the boundary conditions written in [13] are valid also

in TMG. The first purpose of this note is thus to fill this gap and provide a general set

of boundary conditions encompassing the spacelike warped black hole solutions in TMG.

These boundary conditions could be used as a first step towards proving a positivity the-

orem for warped geometries.

In the second part of this note, we will extend our analysis to the timelike squashed

warped geometries and define boundary conditions including the background timelike

warped AdS. We will describe a two parameter family of solitons, i.e. solutions of TMG

obeying these boundary conditions which are completely regular everywhere, without hori-

zons nor closed timelike curves. As far as we are aware, these solitons are a new class of

solutions of TMG which, for example, were not discussed in [9] since they do not contain

horizons, and which evade the analysis of [14] since they are not solutions of Einstein-

Maxwell-Chern-Simons theory.

We conclude by comparing the BTZ metrics and the Brown-Henneaux boundary con-

ditions with the ν2 → 1 limit of spacelike and timelike warped spaces. We will show how

the Virasoro algebra appearing in the asymptotics of the warped spaces can be mapped on

either of the two AdS3 Virasoro algebras.

1 Spacelike warped boundary conditions

We impose the following boundary conditions for ν2 > 1:

gTT = 1 + O(R−1), gTR = O(R−2), gTΦ = −2
ν

l
R + O(R0),

gRR =
l2

3 + ν2

1

R2
+ O(R−3), gRΦ = O(R−1), gΦΦ =

3(ν2 − 1)

l2
R2 + O(R), (1.1)

for spacetimes admitting a limit R → ∞. Here T spans the real line and Φ ∈ [0, 2π].

We will moreover impose for the simplicity of the analysis that gTT admits a polynomial

expansion as gTT = 1+g1
TT R−1 +g2

TT R−2 +o(R−2) and similarly for the other components

– 2 –
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gµν . We denote by g1
µν and g2

µν the first two arbitrary functions appearing in the polynomial

expansion of gµν .1

We will show that these boundary conditions have to be supplemented by a constraint

relating the components g1 and their derivatives that we will introduce and justify at point

(v), see equation (1.18). We will discuss one additional constraint in point (ix), see (1.34)

that could be enforced if one insists on the positivity of the Virasoro zero mode spectrum.

A summary of the boundary conditions including these additional restrictions is presented

at point (x).

These boundary conditions enjoy the following properties:

(i) Black holes are included in the phase space. The warped black hole solutions of

TMG are given by

ds2 =dT 2+

(

3

l2
(ν2−1)R2− 4jl

ν
+12mR

)

dΦ2−4
ν

l
RdTdΦ+

dR2

3+ν2

l2
R2−12mR+ 4j l

ν

, (1.2)

where m and j are two parameters. These solutions obey the fall-off conditions (1.1).

The spacelike warped background geometry, i.e. the geometry (1.2) for m = ±1/6,

j = 0 and Φ ∈ R, can be argued not to be included in these boundary conditions,

generalizing the discussion of [10], section 2.2. Indeed, this spacetime does not admit

any Killing vector with closed orbits, in particular, in any asymptotic region of that

spacetime while in (1.1) ∂
∂Φ is a Killing vector with closed orbits in the asymptotic

region R → ∞.

(ii) The phase space is invariant under a Virasoro and a current algebra. The

set of infinitesimal diffeomorphisms

ln = (NeinΦ + O(R−1)∂T + (−inReinΦ + O(R0))∂R + (einΦ + O(R−2))∂Φ, (1.3)

tn = (N ′einΦ + O(R−1))∂T , (1.4)

where N , N ′ are arbitrary normalization constants leave the boundary conditions

invariant. Indeed, one can check that the Lie derivative of the metric with respect to

tn and ln gives a perturbation obeying the fall-off conditions (1.1). These generators

admit the following commutators

i[lm, ln] = (m − n)lm+n, i[lm, tn] = −ntm+n, [tm, tn] = 0, (1.5)

isomorphic to a semi-direct sum of a Virasoro algebra and a current algebra.

(iii) The charges are finite. The equations of motion admit the following expansion

ETT = R−2E2
TT + O(R−3), ETR = R−2E1

TR + R−3E2
TR + O(R−4),

ETΦ = E1
TΦ + R−1E2

TΦ + O(R−2) ERR = R−1E1
RR + R−2E2

RR + O(R−3), (1.6)

ERΦ = RE1
RΦ + E2

RΦ + O(R−1), EΦΦ = R−1E1
ΦΦ + R−2E2

ΦΦ + O(R−3),

1In view of the linear analysis of [10], it might be interesting to try to find a more general set of boundary

conditions whose coefficients are not only polynomials in R but rational functions of R, in the same spirit as

the log mode [5] can be incorporated into a larger set of boundary conditions [6] than the Brown-Henneaux

ones [15] for asymptotically AdS3 spacetimes in TMG at µ l = 1.

– 3 –
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where the equations E1
µν = 0 depend only linearly on g1

αβ while E2
µν = 0 depends at

most quadratically on g1
αβ and linearly on g2

αβ .

Using the methods of [16–18], one can define the charge one-form kξ[δg; g] associated

with the vector ξ, see [12] for an explicit expression in TMG. The infinitesimal charge

differences δTn, δLn between two solutions of the phase space associated with the

asymptotic symmetries tn and ln are given by

δTn ≡
∫ 2π

0
ktn [δg; g] =

N ′

16π

∫ 2π

0
einΦ

(

δF lin[g1, ∂T g1] +
4lν

3(ν2 − 1)
δE1

TΦ

)

, (1.7)

δLn ≡
∫ 2π

0
kln [δg; g] = − N

8π

∫ 2π

0
einΦδE1

TΦR + O(R0), (1.8)

where F lin[g1, ∂tg
1] is a linear functional of the metric coefficients and their first

derivative at first order in the R expansion given by

F lin[g1, ∂T g1]=
(ν2+3)2

3l4
g1
RR+

(ν2−1)

l2
g1
TT +

2(ν2−3)

3νl
g1
TΦ+

1

3
g1
ΦΦ−

(3+ν2)

3νl
∂T g1

RΦ.

(1.9)

The current charges are therefore finite. When considering a perturbation tangent

to the phase space of solutions to TMG, we see using the equations of motion that

the Virasoro charges are also finite.

(iv) The charges associated to the current algebra are integrable and con-

served. The infinitesimal charges associated to the current algebra are linear func-

tionals of the asymptotic component of the metric, i.e. they are asymptotically linear.

It is then trivial to define the generators associated to a given solution by integrating

the infinitesimal charges on the phase space as

Tm ≈ 1

16π

∫ 2π

0
eimΦF lin[g1, ∂T g1]. (1.10)

where ≈ means that the equality is valid on-shell and where we choose the N ′ factor

in (1.7) to be 1. For the black holes we get Tn = δn,0m.

The charges Tm are finite and so independent of R. We now have to show that the

quantities Tm are conserved, i.e. are T -independent. Observing that

E1
TR ∼ ∂T F lin[g1, ∂T g1], (1.11)

is sufficient to show that when the equations of motions are obeyed, the charges Tm

are indeed conserved.

(v) The Virasoro charges are integrable modulo a constraint. In order to describe

the Virasoro generators, let us denote by

Φ1
I ≡ {g1

µν , ∂αg1
µν , ∂α1

∂α2
g1
µν , . . . } (1.12)

– 4 –
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the set of metric components at first order and their derivatives up to the k-th

derivative where k is a fixed large integer. The abstract index I spans both the

metric indices and the derivatives indices. One can define similarly Φ2
I in terms of g2.

The set of fields Φ1
I , Φ2

I , . . . is a convenient way of parameterizing the phase space

described by the boundary conditions (1.1).

On-shell, one finds that the Virasoro charges have the form

δLn =
1

16π

∫ 2π

0
einΦ

∑

I,J

(

aIJΦ1
IδΦ

1
J + bI(n)δΦ1

I + cIδΦ
2
I

)

+ NδTn. (1.13)

for some coefficients aIJ , cI depending only on the scale l and the parameter ν and

bI(n) depending also explicitly on n. The first set of terms is a quadratic functional

on the phase space and is not at first sight a δ-exact quantity. However, one can

show using a Mathematica code that the matrix aIJ is in fact a symmetric matrix

aIJ = aJI . The quadratic term aIJΦ1
IδΦ

1
J can thus be immediately integrated to

aIJΦ1
IδΦ

1
J = δ(

1

2
aIJΦ1

IΦ
1
J). (1.14)

The last term in (1.13) is pretty subtle. If one chooses a constant normalization

N = constant, one could integrate the charges to get

Ln(N =constant)=
1

16π

∫ 2π

0
einΦ

∑

I,J

(

1

2
aIJΦ1

IΦ
1
J +bI(n)Φ1

I +cIΦ
2
I

)

+constant Tn.

(1.15)

However, one would find that the spectrum of L0 for the black holes is unbounded

from below. Rather, it was pointed out in [12] that if one chooses the following

field-dependent normalization

N =
12lν

3 + ν2
T0, (1.16)

the generators L0 evaluated on the black holes’ phase space

Lblack holes
0 = c

(

3

2
m2 − 2

3c
j

)

(1.17)

which is non-negative for all regular black holes since Lblack holes
0 ≥ 0 is equivalent to

the condition of having an horizon. Moreover, with the choice (1.16), the Virasoro

generators (1.3) reduce to one set of the AdS3 Virasoro generators (3.10) in the limit

ν2 → 1, as will be shown in section 3. Let us see what the choice (1.16) implies for a

general metric obeying the boundary conditions (1.1). Note that terms of the form

T0δTn would in general not be integrable, not being δ−exact. In order to cure that

problem, we restrict our phase space to solutions with fixed T0 charges, i.e.

T0 = m (1.18)

– 5 –
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where m is a fixed quantity, not necessarily positive. This condition allows us to

integrate the term T0δTn as δ(T0Tn + δn,0L̄0) where L̄0 is a background charge. The

condition (1.18) can consistently be imposed given that in the asymptotic symmetry

algebra (1.5) and in its subsequent realization in terms of charges - see (vii) -, T0

commutes with all other generators. The quantity m therefore labels different repre-

sentations of the asymptotic symmetry algebra, while states with a fixed label m will

be characterized by their L0-eigenvalue.

As a consequence of the constraint (1.18), the charges Ln of a solution gµν are defined

as the integral of δLn in the phase space between the reference solution (1.2) with

j = 0 and m fixed and the solution gµν plus the background charge of the reference

solution. In order to be consistent with (1.17), we choose that background charge to

be − 6lν
3+ν2 (T0)

2δn,0. The Virasoro charges are finally given by

Ln =
1

16π

∫ 2π

0
einΦ

∑

I,J

(

1

2
aIJΦ1

IΦ
1
J +bI(n)Φ1

I +cIΦ
2
I

)

− 6lν

3+ν2
(T0)

2δn,0+
12lν

3+ν2
(T0Tn).

(1.19)

(vi) The charges are represented by a Poisson bracket. In Hamiltonian formalism,

it has been shown [19] that the asymptotic symmetry algebra is represented by a Pois-

son bracket of conserved charges on-shell up to central terms when (1) the charges

are defined asymptotically (they are finite); (2) the charges are integrable; (3) the

asymptotic symmetries preserve the phase space. In Lagrangian formalism, accord-

ing to the Theorem 12 of [18], the asymptotic symmetry algebra is represented by a

covariant bracket of conserved charges on-shell up to central terms when in addition

(4) a technical assumption
∫

S
δEL[δg, δg] = 0 holds. The term EL which is defined

e.g. in (5.4) of [20]. This term only depends on the Lagrangian of the theory at hand,

and is at the origin of the difference between the symplectic structures (and hence

the conserved charges) in the Barnich-Brandt formalism [16] and in covariant phase

space methods [21] (see (1.21) and (2.9) of [20]), though in most cases it does not

contribute to the charges.

The first three points have been proven earlier, in (ii)-(iii)-(iv)-(v). The expression

for EL in TMG can be found in eq. (10) of [12], and can be checked to satisfy the

required condition (4). More specifically, we get EL[δg, δg] = O( 1
R

) for the boundary

conditions (1.1).

Therefore, the asymptotic symmetry algebra is represented by a covariant bracket of

conserved charges up to central terms. The algebra is given by [12]

i{Lm,Ln} = (m − n)Lm+n +
c

12
m3δm+n,0,

i{Lm,Tn} = −n(Tm+n − T0δm,−n), (1.20)

i{Tm,Tn} = − 1

3 c̄
mδm+n,0,

The generator T0 takes the constant value m, see (1.18), and commutes with the

Virasoro generators. As mentioned earlier, in contrast to [12] all charges appearing

– 6 –
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in (1.20) are computed with respect to the background ḡm corresponding to (1.2)

with j = 0 and fixed m. In particular, we have that Ln =
∫ g

ḡm
δLn + Nn where

Nn = 3
2cm2δn,0 can be deduced from (1.17)–(1.19). Therefore, from {Lm,Ln} ≡

∫

S
klm [Llng; g] =

∫ g

ḡm

∫

S
k[lm,ln][δg

′; g′] +
∫

S
klm [Lln ḡm; ḡm], one finds that the term

linear in m of the last term gets cancelled by the normalization Nn introduced in the

definition of Ln. The Virasoro central charge c reproduces one sector of the black

hole entropy [9]. It is an open issue whether there exists another set of boundary

conditions that also admit another Virasoro sector with the conjectured central charge

c̄ = 4νl
3+ν2 , or if that other sector of the CFT is somehow encoded in the central charge

of the current algebra.

It is important to note that the central extension appearing in the current algebra is

negative, and that sign cannot be removed by any other choice of normalization of

the generators tn. We will go back to that point in (ix).

(vii) The Virasoro charges are conserved. A non-trivial consequence of the represen-

tation theorem is that the Virasoro charges are conserved on-shell,

∂TLn = {Ln,T0} = 0. (1.21)

Because the expression for Ln (1.19) is rather complicated, it is difficult to check

explicitly that property using the asymptotic form of the equations of motion (1.6).

Since the representation theorem is quite opaque, let us give some more details show-

ing what is non-trivial in the proof that the Virasoro charges are conserved.

Using the definition of the Poisson bracket, we have

∂TLn = {Ln,T0} =

∫

S

kln [Lt0g; g]

=

∫

S

kln [Lt0g; g] −
∫

S

kln [Lt0 ḡm; ḡm] +

∫

S

kln [Lt0 ḡm; ḡm]. (1.22)

The third term is zero because the reference solution is T independent. This term

is also the central term appearing in the Poisson bracket between Ln and T0 which

indeed vanishes in (1.20). We can thus write

∂TLn =

∫

S

∫

γ

[

d

dg′
kln [Lt0g

′; g′]

]

dg′

=

∫

S

∫

γ

k[ln,t0][δg
′; g′]dg′

= 0. (1.23)

In these expressions, γ is a path in the phase space of solutions connecting the

reference metric ḡm to g. Thanks to the integrability condition, the integral in the

phase space is independent on the path chosen. The second equality captures the non-

trivial part of the representation theorem and depends crucially on the integrabity of

the charges. It was first proven in Hamiltonian formalism [19], and rederived later in

Lagrangian formalism, see Prop 8 in [18] or in Prop. 13 of [20]. The third equality

follows from the algebra (1.5) and the linearity of kξ[δg; g] in its argument ξ.

– 7 –
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(viii) The black holes and their Virasoro descendants have a non-negative L0

eigenvalue. If a conformal field theory describes the quantization of the classical

phase space (1.1), we expect that for any given value of m, the black holes will be

associated with primary states in the quantum theory |l0;m〉 labeled by their L0

eigenvalues that we denote by l0. Black holes states will form a highest-weight state

representation of the Virasoro algebra Ln defined as hermitian operators obtained by

canonical quantization of the charges Ln.

If we act on the state |l0;m〉 with Virasoro boundary excitations L−n for n ≥ 1, we

will raise the zero-eigenmode L0 by n as a consequence of the algebra. In fact, using

the algebra (1.20) where the brackets are replaced by −i times the commutators of

the corresponding operators, one can show that the normalized expectation value of

L0 will admit the expansion

〈l0,m|epLnL0e
pL

−n |l0;m〉
〈l0,m|epLnepL

−n |l0;m〉 =
〈l0,m|L0|l0;m〉
〈l0,m|l0;m〉

(

1+2p2n2

(

l0+
c

24
n2

)

+O(p3)

)

. (1.24)

Let us now show that one can obtain exactly that expectation value from the classical

charge analysis, which will provide a consistency check for the existence of a CFT.

Classically, acting on the black holes with boundary excitations (beyond the linear

level) consists in performing finite diffeomorphisms on the black hole metric. The

general finite diffeomorphism generated by exponentiating the algebra is given by

T new = T + T (Φ; p) + N(L(Φ; p) − Φ),

Rnew = R/L′(Φ; p), (1.25)

Φnew = L(Φ; p)

where L(Φ; p), T (Φ; p) are Φ−periodic functions - with L(Φ; p) single-valued on the

circle [0, 2π] and T (Φ; p) single-valued on R - which reduce to L(Φ; p = 0) = Φ,

T (Φ; p = 0) = 0 when the diffeomorphism parameterized by p is the identity and

the prime denotes the derivative with respect to Φ. For example, the finite real

diffeomorphism associated with the real generator ln + l−n obeys

L(Φ; p) = Φ + 2p cos (nΦ) − n sin (2nΦ)p2 + O(p3). (1.26)

The conserved charges associated to the transformed black hole metric can be com-

puted using the methods of [16, 20]. After an integration by parts in Φ, we get the

result

Tm = − 1

6πc̄

∫ 2π

0
dΦeimΦT ′(Φ; p) + δm,0m, (1.27)

Lm =
1

2π

∫ 2π

0
dΦeimΦ(L′(Φ; p))2 Lprimary

0 − 1

12πc̄

∫ 2π

0
dΦeimΦ(T ′(Φ; p))2

+
c

24

1

2π

∫ 2π

0
dΦeimΦ

[

(

L′′(Φ; p)

L′(Φ; p)

)2

+ 2im
L′′(Φ; p)

L′(Φ; p)

]

. (1.28)
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In particular, when acting only with Virasoro generators on the geometry, the eigen-

value L0,

L0 =
1

2π

∫ 2π

0
dΦ(L′(Φ; p))2 Lprimary

0 +
c

24

1

2π

∫ 2π

0
dΦ(

L′′(Φ; p)

L′(Φ; p)
)2 (1.29)

is manifestly non-negative. Notice that in the linear theory around the black holes,

i.e. at linear order in p, the energy L0 is unaffected by the addition of a boundary

excitation. At the next-to linear order in perturbation theory around the black holes,

the energy

L0 = Lprimary
0 + p2

(

2n2(Lprimary
0 +

c

24
n2)

)

+ O(p3) (1.30)

gets shifted by c
24n2 and rescaled by a power of 2n2 which exactly reproduces the

expectations (1.24) from the dual CFT.

(ix) The current algebra lowers the L0 eigenvalue. In the last point, we got the ex-

pression for L0 upon acting with a general diffeomorphism on the black hole metric. In

particular, upon acting with the current algebra only, one lowers the L0 eigenvalue as

L0 = Lprimary
0 − 1

12πc̄

∫ 2π

0
dΦ(T ′(Φ; p))2. (1.31)

The classical geometries corresponding to these states can be written in compact

form as

ds2 = ds2
WBH + 2T ′(Φ; p)dTdΦ +

(

−4ν

l
T ′(Φ; p)R + (T ′(Φ; p))2

)

dΦ2, (1.32)

where ds2
WBH is the black hole metric (1.2). One can in fact reproduce the result (1.31)

from an argument similar to (1.24) by assuming that the black hole states |l0;m〉 also

form a highest weight state representation of the current algebra.2 The negative sign

in (1.31) is a consequence of the algebra (1.20) as one can easily check.

Since the resulting L0 is unbounded from below, it might be desirable to restrict the

phase space to remove the current algebra from the asymptotic symmetry algebra.

Imposing the condition

Tm = δm,0m, (1.33)

is inconsistent with the algebra (1.20) because the current algebra is centrally-extended.

One can instead truncate the phase space by imposing the following condition

g1
ΦΦ +

3(ν2 − 1)

νl
g1
TΦ = 12m, (1.34)

which is consistent with the black holes solutions and preserved by the action of the

Virasoro diffeomorphisms but not preserved by the current algebra. This condition

was found by inspection.

2The classical expectation value (1.31) is also reproduced if one assumes that the black holes states

|l0; m〉 form a lowest weight state representation of the current algebra. Indeed, the classical result is only

sensitive to the real sum tn ± t
−n and cannot distinguish between positive and negative modes.

– 9 –



J
H
E
P
0
8
(
2
0
0
9
)
0
9
2

(x) Summary of the boundary conditions. The final asymptotic spacelike warped

boundary conditions consist in the fall-off conditions (1.1) together with imposing

a fixed T0 sector (1.18) and removing “by hand” the current algebra (1.34) if the

operator L0 is to be bounded from below:

T0 = m , g1
ΦΦ +

3(ν2 − 1)

νl
g1
TΦ = 12m, (1.35)

where T0 is the charge associated to the generator ∂T .

The asymptotic symmetry algebra then only consists in the Virasoro algebra ln and

the generator t0. The generators Tn are well-defined and enter part of the definition of

the charges Ln but these charges do not act on the phase space via a Poisson bracket

once the condition (1.34) is enforced because the vector tn is no longer tangent to

the phase space.

It is an open question to see if all regular solutions of TMG obeying these boundary

conditions have a positive L0. In view of the results of [10], one could conjecture that

this is indeed the case. These boundary conditions are not sufficient to explain the

black hole entropy of the general class of black holes (1.2) since a second Virasoro is

missing. However, the Cardy formula of the restricted class of black holes for which

T0 = m = 0 (and j ≤ 0) can reproduce the black hole entropy using only the Virasoro

algebra Ln, in which case the underlying CFT, if it exists, should be chiral. It is

another open question to find if a second Virasoro algebra could be defined in the

generic case.

2 Boundary conditions for timelike warped AdS3

It turns out that our analysis goes through for timelike warped AdS3 spaces (see [9] and

references therein) by means of an analytic continuation from the spacelike warped case

T → iT , Φ → iΦ, R → −R with some differences that we will emphazise. Let us impose

the boundary conditions for ν2 < 1:

gTT = −1 + O(R−1), gTR = O(R−2), gTΦ = −2
ν

l
R + O(R0),

gRR =
l2

3 + ν2

1

R2
+ O(R−3), gRΦ = O(R−1), gΦΦ =

3(1 − ν2)

l2
R2 + O(R). (2.1)

These boundary conditions enjoy the following properties:

(i) Solitons and the background timelike warped AdS3 are included in the

phase space. Performing the analytic continuation T → iT , Φ → iΦ, R → −R

on the black hole metrics (1.2), we get

ds2 =−dT 2+

(

3

l2
(1−ν2)R2+

4jl

ν
+12mR

)

dΦ2−4
ν

l
RdTdΦ+

dR2

3+ν2

l2
R2+12mR+ 4j l

ν

.

(2.2)

– 10 –



J
H
E
P
0
8
(
2
0
0
9
)
0
9
2

Here the range of the coordinates is as follows: T ∈ R, R ∈ R and Φ ∈ [0, 2π]. The

sign of m is unphysical since the solitons with −m are related to those with +m by

the change of coordinates R → −R, Φ → −Φ.

When ν2 > 1, these metrics describe spacetimes with closed timelike curves and

conical defects that were found as solutions of Einstein-Maxwell-Chern Simons theory

by performing discrete identification in the three-dimensional Gödel spacetime in [13,

14]. When ν2 < 1, these pathologies can be avoided. These metrics do not admit

closed timelike curves (CTCs) at R → ±∞. The relationship gRR = 4ν2

l2
R2 + gΦΦ

implies that if there are regions of spacetime where there are closed timelike curves

- where gΦΦ < 0 - these curves are not hidden by an horizon since if one starts in

the asymptotic region and lowers R, CTCs will be encountered first before reaching

the horizon. The only two ways out are (i) gΦΦ and gRR vanish at the same time

or (ii) gΦΦ is always positive. The former case implies j = 0. Conical singularities

then appear at R = 0 unless m = ±1
6 or m = 0. These special solutions are just the

timelike squashed SL(2, R) × U(1) invariant geometry (with m = ±1
6), see e.g. [9],

and the zero mass solution m = j = 0. In situation (ii), gΦΦ is always positive which

requires that the minimal value of gΦΦ denoted by k2,

k2 =
4l

ν

(

j − 3lν

1 − ν2
m2

)

, (2.3)

be always positive. If the angular momentum j is positive enough such that it

obeys (2.3), gΦΦ > 0 and gRR > 0 which implies that the solutions (2.2) are reg-

ular everywhere.

In summary, the boundary conditions (2.1) contain regular solitons with the range of

parameters k2 ≥ 0 (which include the zero mass soliton m = j = 0) and the timelike

squashed background. They also contain geometries with naked conical singularities

and closed timelike curves.

(ii) The phase space is invariant under a Virasoro and a current algebra. The same

set of infinitesimal diffeomorphisms

ln = (NeinΦ + O(R−1)∂T + (−inReinΦ + O(R0))∂R + (einΦ + O(R−2))∂Φ (2.4)

tn = (N ′einΦ + O(R−1))∂T

where N , N ′ are arbitrary normalization constants leave the boundary conditions

invariant.

(iii) The charges are finite. The proof is similar to the one explained in the spacelike

case except for a few irrelevant signs in the intermediate expressions.

(iv) The charges associated to the current algebra are integrable and con-

served. The proof of integrability and conservation is similar to the spacelike case.

Note that for the solitons (2.2) we have T0 = −m.

– 11 –
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(v) The Virasoro charges are integrable modulo a constraint. Following the space-

like case, one has to impose the constraint that T0 be constant on the phase space in

order that the Virasoro charges be integrable. We impose

T0 = −m, (2.5)

where m is a constant on the phase space. Once again, different classical phase spaces

are labeled by the real number m.

The field-dependent normalization N in (2.4) could be chosen such that the zero

mode L0 be always non-negative for the solitons obeying (2.3). One could choose

N =
8νl

1 − ν2
m − βm (2.6)

for any β > 0, leading to the values of L0 = 3+5ν2

24lν
k2 + 1

2βm2. The constant β will be

fixed in (viii).

(vi) The charges form a representation of the asymptotic symmetry algebra.

The charge algebra

i{Lm,Ln} = (m − n)Lm+n +
c

12
m3δm+n,0,

i{Lm,Tn} = −n(Tm+n − T0δm,−n), (2.7)

i{Tm,Tn} =
1

3c̄
mδm+n,0.

differs from the one obtained in the spacelike case only by the sign of the central

charge in the current algebra which is now positive.

The Virasoro generators are conserved (property (vii)) as a consequence of the rep-

resentation theorem.

(viii) The solitons and their Virasoro descendants have a non-negative L0 eigen-

value. The descendants of the solitons are defined by acting with the diffeomor-

phisms (1.25). It turns out that there is only one value of β in (2.6) such that the L0

charge be always non-negative for regular solitons and their Virasoro descendants.

Let us choose that value β = 3+5ν2

3+ν2

4νl
1−ν2 . We then get that the normalisation

N =
12νl

3 + ν2
m (2.8)

is identical to the one used for the black holes while the L0 charge of the solitons (2.2)

is given by

LSol
0 =

3 + 5ν2

6ν2

(

j − 3lν

1 − ν2
m2

)

+
2lν(3 + 5ν2)

(1 − ν2)(3 + ν2)
m2. (2.9)

The L0 charge of the Virasoro descendants of the solitons is given by

L0 =
LSol

0

2π

∫ 2π

0
dΦ(L′(Φ; p))2 +

c

24

1

2π

∫ 2π

0
dΦ(

L′′(Φ; p)

L′(Φ; p)
)2 (2.10)
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This expression is indeed non-negative for regular solitons. The energy of the solitons

goes to ∞ in the limit ν2 → 1. This is consistent with the observation that no solitons

are known when ν2 ≥ 1. Finally, for the SL(2, R) × U(1) invariant timelike warped

background m = 1
6 , j = 0, the energy is

Lbackground
0 = − c

24
, (2.11)

which reproduces the mass gap of an extremal CFT where the only primary states

which are not the identity have an L0 eigenvalue larger than 0.

(ix) The current descendants of the solitons have a non-negative L0 eigenvalue.

Upon acting with the full asymptotic symmetry algebra (2.4), one gets solutions of

TMG whose L0 charge are

L0 = LSol
0 +

1

12πc̄

∫ 2π

0
dΦ(T ′(Φ; p))2 (2.12)

Notice the crucial sign difference between (1.32) and (2.12) which is a consequence

of the positivity of the central charge in the current algebra (2.7). In this sector, the

Virasoro zero mode is always non-negative even upon acting on the solitons with the

current algebra.

(x) Summary of the boundary conditions. The final boundary conditions for the

timelike warped geometries consist in the fall-off conditions (2.1) together with im-

posing a fixed T0 sector (2.5).

The asymptotic symmetry algebra consists in both the Virasoro algebra ln and the

current algebra tn. The charge T0 commutes with the other generators so it can

be consistently kept fixed. The Virasoro algebra as well as the current algebra are

centrally extended with positive central charges. The phase space contains a class of

regular solitons whose L0 charge is non-negative. It moreover contains the timelike

warped background which has a mass gap of −c/24 with respect to the solitons. It

might be interesting to find out if bulk excitations of TMG obey these boundary

conditions and if they have positive energy by extending the work of [10] to the

timelike warped case.

3 Comparison to Brown-Henneaux boundary conditions

The boundary conditions

gtt = −r2

l2
+ O(r0), gtr = O(r−3), gtφ = O(r0),

grr =
l2

r2
+ O(r−4), grφ = O(r−3), gφφ = r2 + O(r0). (3.1)

where φ ∈ [0, 2π], t ∈ R have been written down to define a phase space for 3d Einstein

gravity with negative cosmological constant [15]. These conditions have been also used in

TMG at the chiral point µl = 1(ν = 1/3) to define chiral gravity [3].
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For a generic value of ν2 > 1, it is not expected that these boundary conditions have

anything to do with the spacelike warped boundary conditions (1.1) or when ν2 < 1 with

the timelike warped boundary conditions (2.1). However, in the limit ν2 → 1, one can try

to compare them.

It has been noticed [14] that the regular warped black holes (1.2) reduce to the BTZ

black holes

ds2 = −(N⊥)2dt2 + (N⊥)−2dr2 + r2(dφ + Nφdt)2, (3.2)

with

(N⊥)2 = −M +
r2

l2
+

J2

4r2
, Nφ = − J

2r2
, (3.3)

in a rotating frame when ν2 = 1. On the other hand, we have mentioned earlier that the

regular solitons (2.2) disappear in the limit ν2 → 1 because their energy becomes infinite.

In order to understand the relationship between the BTZ metric and the spacelike (1.2)

and timelike metrics (2.2) in more generality, let us introduce two changes of coordinates,

parameterized by a sign ε2 which are valid respectively when Ml + J 6= 0 (ε2 = +1) and

when Ml − J 6= 0 (ε2 = −1). In order to write down the rotating frame for the BTZ

metrics, let us introduce another sign ε = sign(Ml + ε2J) which is always positive in the

range of non-extremal BTZ black holes (Ml + J > 0 and Ml − J > 0), always negative in

the range of conical defects Ml + J < 0 and Ml − J < 0 and is positive or negative in the

other cases. The BTZ metric can then be written in the coordinates (T,R,Φ) given by

t =
1

6m
T, r =

√

12mR − 4εjl, φ = ε2Φ − ε2

6ml
T. (3.4)

as

ds2 = εdT 2 + (12mR − 4εjl) dΦ2 − 4
R

l
dTdΦ +

dR2

4
l2

R2 − 12εmR + 4j l
, (3.5)

where the new parameters are m = ε2

6

√

|M + ε2J
l
| and j = εε2

8 J . The metric (3.5) is the

limiting case of the spacelike (1.2) or timelike (2.2) spacetimes when ν2 = 1. Therefore, all

non-extremal BTZ black holes are mapped to the spacelike (ǫ = +1) metrics (3.5) using

either change of coordinates. The extremal black holes can be mapped also to the spacelike

metric using one of the appropriate change of coordinates. These changes of coordinates

are not valid for the zero mass black hole. The conical defects and the background anti-de

Sitter space are mapped to the timelike (ǫ = −1) metrics (3.5).

The same changes of coordinates (3.4) map the Brown-Henneaux boundary condi-

tions (3.1) to fall-off conditions comparable to (1.1) when ν2 = 1 with however some

differences that we will emphasize by a mark ∗,

gdiff on BH
TT =∗ O(R0), gdiff on BH

TR = O(R−2), gdiff on BH
TΦ = −2

R

l
+ O(R0),

(3.6)

gdiff on BH
RR =

l2

4

1

R2
+ O(R−3), gdiff on BH

RΦ =∗ O(R−2), gdiff on BH
ΦΦ =∗ 12mR + O(R0).

– 14 –



J
H
E
P
0
8
(
2
0
0
9
)
0
9
2

The condition on gTT is weaker than gTT = 1 in (1.1) or gTT = −1 in (2.1) and clearly,

it is not possible to rescale T to get both gTT = ±1. It seems to indicate that there

are spacetimes which obey the boundary conditions of Brown-Henneaux that cannot be

mapped to spacetimes obeying the spacelike or the timelike warped boundary conditions

even in the limit ν2 → 1. Moreover, given that gRΦ and gΦΦ in (1.1) are less constrained

than in (3.6), we suspect that some spacetimes obeying the boundary conditions (1.1)

or (2.1) are not diffeomorphic in the limit ν2 → 1 to spacetimes obeying the Brown-

Henneaux boundary conditions.

The Brown-Henneaux boundary conditions admit as asymptotic symmetries the two

sets of Virasoro generators

ξt = l(T+(x+) + T−(x−)) + O(r−2), (3.7)

ξr = −r(∂+T+(x+) + ∂−T−(x−)) + O(r−1), (3.8)

ξφ = T+(x+) − T−(x−) + O(r−2). (3.9)

with x± = φ± t/l and with right-moving Virasoro generators ln associated to T+ and left-

moving Virasoro’s l̄n associated with T−. Under the diffeomorphism (3.4), these generators

transform as

ξT = 6m l(T+(x+) + T−(x−)) + O(R−1),

ξR = −2R(∂+T+(x+) + ∂−T−(x−)) + O(R0), (3.10)

ξΦ = (1 + ε2)T
+(x+) + (1 − ε2)T

−(x−) + O(R−1).

For the change of coordinates with ε2 = +1, we find that the right-moving Virasoro gen-

erators coincides with the asymptotic generators (1.3)–(2.4) with the normalisation (1.16)

when ν2 = 1. Similarly, one can use the change of coordinates with ε2 = −1 to map the

left-moving Virasoro generators to the generators (1.3)–(2.4) when ν2 = 1. Therefore, we

conclude that the Virasoro algebra found in the asymptotic symmetry algebra of timelike

and spacelike spaces can be mapped in the limit ν2 → 1 to both the left and right-moving

Virasoro algebras.

Finally, note that the second set of Virasoro generators in (3.10) cannot be extended

to define a consistent second Virasoro algebra in warped spaces ν2 6= 1. Indeed, the left-

moving generators when ε2 = +1 and the right-moving generators when ε2 = −1 expanded

in modes have the form

ξT = −3ε2m le
in

“

Φ− T

3ε2ml

”

+ O(R−1),

ξR = inRe
in

“

Φ− T

3ε2ml

”

+ O(R0), (3.11)

ξΦ = O(R−1).

They are not the ν2 → 1 limit of any asymptotic symmetry of (1.1)–(2.1). If one tries to

use these generators for ν2 6= 1, one finds that they are associated with infinite charges.
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